Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Hum Genet ; 111(4): 791-804, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38503300

RESUMEN

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Asunto(s)
Inmunodeficiencia Combinada Grave , Lactante , Humanos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Mutación/genética , Linfocitos T/metabolismo , Mutación Missense/genética
2.
Am J Hematol ; 99(4): 642-661, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164980

RESUMEN

Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.


Asunto(s)
Neoplasias Hematológicas , Humanos , Hibridación Fluorescente in Situ , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Cariotipificación , Mapeo Cromosómico
3.
PLoS Genet ; 19(8): e1010889, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578974

RESUMEN

Copy number variants (CNVs) are a major source of genetic variation and can disrupt genes or affect gene dosage. They are known to be causal or underlie predisposition to various diseases. However, the role of CNVs in inherited breast cancer susceptibility has not been thoroughly investigated. To address this, we performed whole-exome sequencing based analysis of rare CNVs in 98 high-risk Northern Finnish breast cancer cases. After filtering, selected candidate alleles were validated and characterized with a combination of orthogonal methods, including PCR-based approaches, optical genome mapping and long-read sequencing. This revealed three recurrent alterations: a 31 kb deletion co-occurring with a retrotransposon insertion (delins) in RAD52, a 13.4 kb deletion in HSD17B14 and a 64 kb partial duplication of RAD51C. Notably, all these genes encode proteins involved in pathways previously identified as essential for breast cancer development. Variants were genotyped in geographically matched cases and controls (altogether 278 hereditary and 1983 unselected breast cancer cases, and 1229 controls). The RAD52 delins and HSD17B14 deletion both showed significant enrichment among cases with indications of hereditary disease susceptibility. RAD52 delins was identified in 7/278 cases (2.5%, P = 0.034, OR = 2.86, 95% CI = 1.10-7.45) and HSD17B14 deletion in 8/278 cases (2.9%, P = 0.014, OR = 3.28, 95% CI = 1.31-8.23), the frequency of both variants in the controls being 11/1229 (0.9%). This suggests a role for RAD52 and HSD17B14 in hereditary breast cancer susceptibility. The RAD51C duplication was very rare, identified only in 2/278 of hereditary cases and 2/1229 controls (P = 0.157, OR = 4.45, 95% CI = 0.62-31.70). The identification of recurrent CNVs in these genes, and especially the relatively high frequency of RAD52 and HSD17B14 alterations in the Finnish population, highlights the importance of studying CNVs alongside single nucleotide variants when searching for genetic factors underlying hereditary disease predisposition.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Secuenciación del Exoma , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , 17-Hidroxiesteroide Deshidrogenasas/genética
4.
HGG Adv ; 4(3): 100200, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37216008

RESUMEN

Split-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci. We describe a family with isolated X-linked SHFM, for which the causative variant could be detected after a diagnostic journey of 20 years. We combined well-established approaches including microarray-based copy number variant analysis and fluorescence in situ hybridization coupled with optical genome mapping and whole genome sequencing. This strategy identified a complex structural variant (SV) comprising a 165-kb gain of 15q26.3 material ([GRCh37/hg19] chr15:99795320-99960362dup) inserted in inverted position at the site of a 38-kb deletion on Xq27.1 ([GRCh37/hg19] chrX:139481061-139518989del). In silico analysis suggested that the SV disrupts the regulatory framework on the X chromosome and may lead to SOX3 misexpression. We hypothesize that SOX3 dysregulation in the developing limb disturbed the fine balance between morphogens required for maintaining AER function, resulting in SHFM in this family.


Asunto(s)
Deformidades Congénitas de las Extremidades , Humanos , Hibridación Fluorescente in Situ , Deformidades Congénitas de las Extremidades/genética , Sitios Genéticos , Factores de Transcripción SOXB1/genética
5.
Cancers (Basel) ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831635

RESUMEN

The fluorescence in situ hybridization (FISH) technique plays an important role in the risk stratification and clinical management of patients with chronic lymphocytic leukemia (CLL). For genome-wide analysis, FISH needs to be complemented with other cytogenetic methods, including karyotyping and/or chromosomal microarrays. However, this is often not feasible in a diagnostic setup. Optical genome mapping (OGM) is a novel technique for high-resolution genome-wide detection of structural variants (SVs), and previous studies have indicated that OGM could serve as a generic cytogenetic tool for hematological malignancies. Herein, we report the results from our study evaluating the concordance of OGM and standard-of-care FISH in 18 CLL samples. The results were fully concordant between these two techniques in the blinded comparison. Using in silico dilution series, the lowest limit of detection with OGM was determined to range between 3 and 9% variant allele fractions. Genome-wide analysis by OGM revealed additional (>1 Mb) aberrations in 78% of the samples, including both unbalanced and balanced SVs. Importantly, OGM also enabled the detection of clinically relevant complex karyotypes, undetectable by FISH, in three samples. Overall, this study demonstrates the potential of OGM as a first-tier cytogenetic test for CLL and as a powerful tool for genome-wide SV analysis.

6.
Fam Cancer ; 22(3): 291-294, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36653541

RESUMEN

CHEK2 is a well-established breast cancer susceptibility gene. The most frequent pathogenic CHEK2 variant is 1100delC, a loss-of-function mutation conferring 2-fold risk for breast cancer. This gene also harbors other rare variants encountered in the clinical gene panels for hereditary cancer. One of these is CHEK2 c.1312 G > T, p.(Asp438Tyr) in the kinase domain of the protein, but due to its rarity its clinical significance for breast cancer predisposition has remained unclear. Here, we tested the prevalence of CHEK2 p.(Asp438Tyr) allele showing enrichment in the Northern Finnish population, in a total of 2284 breast cancer patients from this geographical region. Genotyping was performed for DNA samples extracted from peripheral blood using high-resolution melt analysis. Fourteen CHEK2 p.(Asp438Tyr) carriers were identified (14/2284, 0.6%, P = 0.67): two in the cohort of breast cancer cases with the indication of inherited disease susceptibility (2/281, 0.7%, P = 1.00) and twelve in the breast cancer cohort unselected for the family history of disease and age at disease onset (12/2003, 0.6%, P = 0.66). This frequency did not differ from the frequency in the general population (10/1299, 0.8%). No CHEK2 p.(Asp438Tyr) homozygotes were identified. Our results indicate that CHEK2 p.(Asp438Tyr) carriers do not have an increased risk for breast cancer and the classification of the CHEK2 p.(Asp438Tyr) variant can be changed from the variant of uncertain significance (VUS) to likely benign for breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Alelos , Quinasa de Punto de Control 2/genética , Genotipo , Predisposición Genética a la Enfermedad
7.
Fam Cancer ; 22(1): 13-17, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35590014

RESUMEN

TINF2 is a critical subunit of the shelterin complex, which protects and maintains the length of telomeres. Pathogenic missense and truncating TINF2 mutations are causative for dyskeratosis congenita (DC), a rare, dominantly inherited bone marrow failure syndrome characterized by mucocutaneous abnormalities and cancer predisposition. Recent reports indicate that specific TINF2 truncating mutations act as high penetrance cancer predisposition alleles outside DC context, including breast cancer in their tumor spectrum. Here, we have evaluated the role of germline mutations in TINF2 and other shelterin genes in inherited breast cancer susceptibility using exome sequencing data from 98 Northern Finnish breast cancer cases with indication of inherited disease predisposition as a discovery cohort. A single protein truncating variant, TINF2 p.Tyr312Ter, was identified in one of the cases (1/98), and four more carriers were observed in the subsequently genotyped unselected breast cancer cohort (4/1904). None of the carriers were reported to have DC. TINF2 p.Tyr312Ter resulted in stable short form of mRNA transcript, and normal telomere length has been indicated by a recent report. Although recurrent in cases (total of 5/2095), TINF2 p.Tyr312Ter is also present in Finnish population controls (8/12,517), and the observed 4-fold higher frequency in cases falls at most into the range of moderate breast cancer risk alleles (OR 3.74, 95% CI 1.22-11.45, p = 0.029). Current results indicate that not all TINF2 truncating variants are high cancer risk alleles and add further evidence that different TINF2 mutations can have very diverse effects on the disease phenotype.


Asunto(s)
Disqueratosis Congénita , Neoplasias , Humanos , Complejo Shelterina , Telómero/metabolismo , Telómero/patología , Mutación , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Disqueratosis Congénita/patología , Genotipo , Proteínas de Unión a Telómeros/genética
8.
Cancers (Basel) ; 14(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35884436

RESUMEN

Novel treatments in chronic lymphocytic leukemia (CLL) have generated interest regarding the clinical impact of genomic complexity, currently assessed by chromosome banding analysis (CBA) and chromosomal microarray analysis (CMA). Optical genome mapping (OGM), a novel technique based on imaging of long DNA molecules labeled at specific sites, allows the identification of multiple cytogenetic abnormalities in a single test. We aimed to determine whether OGM is a suitable alternative to cytogenomic assessment in CLL, especially focused on genomic complexity. Cytogenomic OGM aberrations from 42 patients were compared with CBA, FISH, and CMA information. Clinical−biological characteristics and time to first treatment (TTFT) were analyzed according to the complexity detected by OGM. Globally, OGM identified 90.3% of the known alterations (279/309). Discordances were mainly found in (peri-)centromeric or telomeric regions or subclonal aberrations (<15−20%). OGM underscored additional abnormalities, providing novel structural information on known aberrations in 55% of patients. Regarding genomic complexity, the number of OGM abnormalities had better accuracy in predicting TTFT than current methods (C-index: 0.696, 0.602, 0.661 by OGM, CBA, and CMA, respectively). A cut-off of ≥10 alterations defined a complex OGM group (C-OGM, n = 12), which included 11/14 patients with ≥5 abnormalities by CBA/CMA and one patient with chromothripsis (Kappa index = 0.778; p < 0.001). Moreover, C-OGM displayed enrichment of TP53 abnormalities (58.3% vs. 3.3%, p < 0.001) and a significantly shorter TTFT (median: 2 vs. 43 months, p = 0.014). OGM is a robust technology for implementation in the routine management of CLL patients, although further studies are required to define standard genomic complexity criteria.

9.
Am J Hum Genet ; 109(4): 631-646, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35290762

RESUMEN

Studies of de novo mutation (DNM) have typically excluded some of the most repetitive and complex regions of the genome because these regions cannot be unambiguously mapped with short-read sequencing data. To better understand the genome-wide pattern of DNM, we generated long-read sequence data from an autism parent-child quad with an affected female where no pathogenic variant had been discovered in short-read Illumina sequence data. We deeply sequenced all four individuals by using three sequencing platforms (Illumina, Oxford Nanopore, and Pacific Biosciences) and three complementary technologies (Strand-seq, optical mapping, and 10X Genomics). Using long-read sequencing, we initially discovered and validated 171 DNMs across two children-a 20% increase in the number of de novo single-nucleotide variants (SNVs) and indels when compared to short-read callsets. The number of DNMs further increased by 5% when considering a more complete human reference (T2T-CHM13) because of the recovery of events in regions absent from GRCh38 (e.g., three DNMs in heterochromatic satellites). In total, we validated 195 de novo germline mutations and 23 potential post-zygotic mosaic mutations across both children; the overall true substitution rate based on this integrated callset is at least 1.41 × 10-8 substitutions per nucleotide per generation. We also identified six de novo insertions and deletions in tandem repeats, two of which represent structural variants. We demonstrate that long-read sequencing and assembly, especially when combined with a more complete reference genome, increases the number of DNMs by >25% compared to previous studies, providing a more complete catalog of DNM compared to short-read data alone.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Femenino , Humanos , Mutación/genética , Nucleótidos , Análisis de Secuencia de ADN , Programas Informáticos
11.
Hum Genet ; 141(3-4): 465-484, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34410491

RESUMEN

Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype-phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Proteínas de Transporte de Membrana/genética , Mutación , Fenotipo , Transportadores de Sulfato/genética , Acueducto Vestibular/anomalías
12.
Am J Hum Genet ; 108(8): 1409-1422, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237280

RESUMEN

Chromosomal aberrations including structural variations (SVs) are a major cause of human genetic diseases. Their detection in clinical routine still relies on standard cytogenetics. Drawbacks of these tests are a very low resolution (karyotyping) and the inability to detect balanced SVs or indicate the genomic localization and orientation of duplicated segments or insertions (copy number variant [CNV] microarrays). Here, we investigated the ability of optical genome mapping (OGM) to detect known constitutional chromosomal aberrations. Ultra-high-molecular-weight DNA was isolated from 85 blood or cultured cells and processed via OGM. A de novo genome assembly was performed followed by structural variant and CNV calling and annotation, and results were compared to known aberrations from standard-of-care tests (karyotype, FISH, and/or CNV microarray). In total, we analyzed 99 chromosomal aberrations, including seven aneuploidies, 19 deletions, 20 duplications, 34 translocations, six inversions, two insertions, six isochromosomes, one ring chromosome, and four complex rearrangements. Several of these variants encompass complex regions of the human genome involved in repeat-mediated microdeletion/microduplication syndromes. High-resolution OGM reached 100% concordance compared to standard assays for all aberrations with non-centromeric breakpoints. This proof-of-principle study demonstrates the ability of OGM to detect nearly all types of chromosomal aberrations. We also suggest suited filtering strategies to prioritize clinically relevant aberrations and discuss future improvements. These results highlight the potential for OGM to provide a cost-effective and easy-to-use alternative that would allow comprehensive detection of chromosomal aberrations and structural variants, which could give rise to an era of "next-generation cytogenetics."


Asunto(s)
Aberraciones Cromosómicas , Trastornos de los Cromosomas/diagnóstico , Mapeo Cromosómico/métodos , Análisis Citogenético/métodos , Variaciones en el Número de Copia de ADN , Genoma Humano , Análisis por Micromatrices/métodos , Trastornos de los Cromosomas/genética , Humanos , Cariotipificación
13.
Am J Hum Genet ; 108(8): 1423-1435, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237281

RESUMEN

Somatic structural variants (SVs) are important drivers of cancer development and progression. In a diagnostic set-up, especially for hematological malignancies, the comprehensive analysis of all SVs in a given sample still requires a combination of cytogenetic techniques, including karyotyping, FISH, and CNV microarrays. We hypothesize that the combination of these classical approaches could be replaced by optical genome mapping (OGM). Samples from 52 individuals with a clinical diagnosis of a hematological malignancy, divided into simple (<5 aberrations, n = 36) and complex (≥5 aberrations, n = 16) cases, were processed for OGM, reaching on average: 283-fold genome coverage. OGM called a total of 918 high-confidence SVs per sample, of which, on average, 13 were rare and >100 kb. In addition, on average, 73 CNVs were called per sample, of which six were >5 Mb. For the 36 simple cases, all clinically reported aberrations were detected, including deletions, insertions, inversions, aneuploidies, and translocations. For the 16 complex cases, results were largely concordant between standard-of-care and OGM, but OGM often revealed higher complexity than previously recognized. Detailed technical comparison with standard-of-care tests showed high analytical validity of OGM, resulting in a sensitivity of 100% and a positive predictive value of >80%. Importantly, OGM resulted in a more complete assessment than any previous single test and most likely reported the most accurate underlying genomic architecture (e.g., for complex translocations, chromoanagenesis, and marker chromosomes). In conclusion, the excellent concordance of OGM with diagnostic standard assays demonstrates its potential to replace classical cytogenetic tests as well as to rapidly map novel leukemia drivers.


Asunto(s)
Aberraciones Cromosómicas , Mapeo Cromosómico/métodos , Análisis Citogenético/métodos , Variaciones en el Número de Copia de ADN , Genoma Humano , Neoplasias Hematológicas/diagnóstico , Análisis por Micromatrices/métodos , Neoplasias Hematológicas/genética , Humanos , Cariotipificación
14.
J Pathol ; 255(2): 202-211, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34231212

RESUMEN

In a subset of pediatric cancers, a germline cancer predisposition is highly suspected based on clinical and pathological findings, but genetic evidence is lacking, which hampers genetic counseling and predictive testing in the families involved. We describe a family with two siblings born from healthy parents who were both neonatally diagnosed with atypical teratoid rhabdoid tumor (ATRT). This rare and aggressive pediatric tumor is associated with biallelic inactivation of SMARCB1, and in 30% of the cases, a predisposing germline mutation is involved. Whereas the tumors of both siblings showed loss of expression of SMARCB1 and acquired homozygosity of the locus, whole exome and whole genome sequencing failed to identify germline or somatic SMARCB1 pathogenic mutations. We therefore hypothesized that the insertion of a pathogenic repeat-rich structure might hamper its detection, and we performed optical genome mapping (OGM) as an alternative strategy to identify structural variation in this locus. Using this approach, an insertion of ~2.8 kb within intron 2 of SMARCB1 was detected. Long-range PCR covering this region remained unsuccessful, but PacBio HiFi genome sequencing identified this insertion to be a SINE-VNTR-Alu, subfamily E (SVA-E) retrotransposon element, which was present in a mosaic state in the mother. This SVA-E insertion disrupts correct splicing of the gene, resulting in loss of a functional allele. This case demonstrates the power of OGM and long-read sequencing to identify genomic variations in high-risk cancer-predisposing genes that are refractory to detection with standard techniques, thereby completing the clinical and molecular diagnosis of such complex cases and greatly improving counseling and surveillance of the families involved. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Mapeo Cromosómico/métodos , Retroelementos/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética , Femenino , Mutación de Línea Germinal , Humanos , Recién Nacido , Tumor Rabdoide/congénito , Hermanos , Teratoma/congénito
15.
HGG Adv ; 2(4): 100046, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-35047838

RESUMEN

The lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical genome mapping and long-read sequencing, we aimed to identify the pathogenic variant in a large family with X-linked choroideremia. In this family, aberrant splicing of exon 12 of the choroideremia gene CHM was detected in 2003, but the underlying genomic defect remained elusive. Optical genome mapping and long-read sequencing approaches now revealed an intragenic 1,752 bp inverted duplication including exon 12 and surrounding regions, located downstream of the wild-type copy of exon 12. Both breakpoint junctions were confirmed with Sanger sequencing and segregate with the X-linked inheritance in the family. The breakpoint junctions displayed sequence microhomology suggestive for an erroneous replication mechanism as the origin of the structural variant. The inverted duplication is predicted to result in a hairpin formation of the pre-mRNA with the wild-type exon 12, leading to exon skipping in the mature mRNA. The identified inverted duplication is deemed the hidden pathogenic cause of disease in this family. Our study shows that optical genome mapping and long-read sequencing have significant potential for the identification of (hidden) structural variants in rare genetic diseases.

16.
Mol Genet Genomic Med ; 8(11): e1493, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32949222

RESUMEN

BACKGROUND: Rare protein truncating variants of NTHL1 gene are causative for the recently described, recessively inherited NTHL1 tumor syndrome that is characterized by an increased lifetime risk for colorectal cancer, colorectal polyposis, and breast cancer. Although there is strong evidence for breast cancer being a part of the cancer spectrum in these families, the role of pathogenic NTHL1 variants in breast cancer susceptibility in general population remains unclear. METHODS: We tested the prevalence of NTHL1 nonsense variant c.268C>T, p.Q90*, which is the major allele in NTHL1 families and also shows enrichment in the Finnish population, in a total of 1333 breast cancer patients. Genotyping was performed for DNA samples extracted from peripheral blood by using high-resolution melt analysis. RESULTS: Sixteen NTHL1 p.Q90* heterozygous carriers were identified (1.2%, p = 0.61): 5 in hereditary cohort (n = 234, 2.1%, p = 0.39) and 11 in unselected cohort (n = 1099, 1.0%, p = 0.36). This frequency is equal to that in the general population (19/1324, 1.4%). No NTHL1 p.Q90* homozygotes were identified. CONCLUSION: Our results indicate that NTHL1 p.Q90* heterozygous carriers do not have an increased risk for breast cancer and that the variant is unlikely to be a significant contributor to breast cancer risk at the population level.


Asunto(s)
Codón sin Sentido , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Receptores ErbB/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Heterocigoto , Humanos , Linaje
17.
JAMA ; 324(7): 663-673, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32706371

RESUMEN

Importance: Severe coronavirus disease 2019 (COVID-19) can occur in younger, predominantly male, patients without preexisting medical conditions. Some individuals may have primary immunodeficiencies that predispose to severe infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To explore the presence of genetic variants associated with primary immunodeficiencies among young patients with COVID-19. Design, Setting, and Participants: Case series of pairs of brothers without medical history meeting the selection criteria of young (age <35 years) brother pairs admitted to the intensive care unit (ICU) due to severe COVID-19. Four men from 2 unrelated families were admitted to the ICUs of 4 hospitals in the Netherlands between March 23 and April 12, 2020. The final date of follow-up was May 16, 2020. Available family members were included for genetic variant segregation analysis and as controls for functional experiments. Exposure: Severe COVID-19. Main Outcome and Measures: Results of rapid clinical whole-exome sequencing, performed to identify a potential monogenic cause. Subsequently, basic genetic and immunological tests were performed in primary immune cells isolated from the patients and family members to characterize any immune defects. Results: The 4 male patients had a mean age of 26 years (range, 21-32), with no history of major chronic disease. They were previously well before developing respiratory insufficiency due to severe COVID-19, requiring mechanical ventilation in the ICU. The mean duration of ventilatory support was 10 days (range, 9-11); the mean duration of ICU stay was 13 days (range, 10-16). One patient died. Rapid clinical whole-exome sequencing of the patients and segregation in available family members identified loss-of-function variants of the X-chromosomal TLR7. In members of family 1, a maternally inherited 4-nucleotide deletion was identified (c.2129_2132del; p.[Gln710Argfs*18]); the affected members of family 2 carried a missense variant (c.2383G>T; p.[Val795Phe]). In primary peripheral blood mononuclear cells from the patients, downstream type I interferon (IFN) signaling was transcriptionally downregulated, as measured by significantly decreased mRNA expression of IRF7, IFNB1, and ISG15 on stimulation with the TLR7 agonist imiquimod as compared with family members and controls. The production of IFN-γ, a type II IFN, was decreased in patients in response to stimulation with imiquimod. Conclusions and Relevance: In this case series of 4 young male patients with severe COVID-19, rare putative loss-of-function variants of X-chromosomal TLR7 were identified that were associated with impaired type I and II IFN responses. These preliminary findings provide insights into the pathogenesis of COVID-19.


Asunto(s)
COVID-19/virología , Mutación con Pérdida de Función , SARS-CoV-2/genética , Adulto , Ensayo de Inmunoadsorción Enzimática , Resultado Fatal , Hospitalización , Humanos , Unidades de Cuidados Intensivos , Leucocitos Mononucleares , Masculino , Países Bajos , Linaje , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Adulto Joven
18.
Front Genet ; 10: 426, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31134132

RESUMEN

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for the identification of structural variants, sequencing repetitive regions, phasing of alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.

19.
Int J Cancer ; 145(8): 2070-2081, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30809794

RESUMEN

Strong inherited predisposition to breast cancer is estimated to cause about 5-10% of all breast cancer cases. As the known susceptibility genes, such as BRCA1 and BRCA2, explain only a fraction of this, additional predisposing genes and related biological mechanisms are actively being searched for. We have recently identified a recurrent MCPH1 germline mutation, p.Arg304ValfsTer3, as a breast cancer susceptibility allele. MCPH1 encodes a multifunctional protein involved in maintenance of genomic integrity and it is also somatically altered in various cancer types, including breast cancer. Additionally, biallelic MCPH1 mutations are causative for microcephaly and at cellular level premature chromosome condensation. To study the molecular mechanisms leading to cancer predisposition and malignant conversion, here we have modeled the effect of MCPH1 p.Arg304ValfsTer3 mutation using gene-edited MCF10A breast epithelial cells. As a complementary approach, we also sought for additional potential cancer driver mutations in MCPH1 p.Arg304ValfsTer3 carrier breast tumors. We show that mutated MCPH1 de-regulates transcriptional programs related to invasion and metastasis and leads to downregulation of histone genes. These global transcriptional changes are mirrored by significantly increased migration and invasion potential of the cells as well as abnormal chromosomal condensation both before and after mitosis. These findings provide novel molecular insights to MCPH1 tumor suppressor functions and establish a role in regulation of transcriptional programs related to malignant conversion and chromosomal assembly. The MCPH1 p.Arg304ValfsTer3 carrier breast tumors showed recurrent tumor suppressor gene TP53 mutations, which were also significantly over-represented in breast tumors with somatically inactivated MCPH1.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Aberraciones Cromosómicas , Proteínas del Citoesqueleto/genética , Predisposición Genética a la Enfermedad/genética , Transcriptoma , Línea Celular , Fosfatidilinositol 3-Quinasa Clase I/genética , Genes Supresores de Tumor , Humanos , Mutación , Proteína p53 Supresora de Tumor/genética
20.
Sci Rep ; 8(1): 14814, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287880

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoma with diverse outcomes. Concurrent translocation of MYC and BCL-2 and/or BCL-6, and concurrent immunohistochemical (IHC) high expression of MYC and BCL-2, have been linked to unfavorable treatment responses. TP53-mutated DLBCL has also been linked to worse outcome. Our aim was to evaluate the aforementioned issues in a cohort of 155 patients uniformly treated with R-CHOP-like therapies. We performed direct sequencing of TP53 exons 5, 6, 7 and 8 as well as fluorescence in-situ hybridization (FISH) of MYC, BCL-2 and BCL-6, and IHC of MYC, BCL-2 and BCL-6. In multivariate analysis, TP53 mutations in L3 and loop-sheet helix (LSH) associated with a risk ratio (RR) of disease-specific survival (DSS) of 8.779 (p = 0.022) and a RR of disease-free survival (DFS) of 10.498 (p = 0.011). In IHC analysis BCL-2 overexpression was associated with inferior DFS (p = 0.002) and DSS (p = 0.002). DLBCL with BCL-2 and MYC overexpression conferred inferior survival in all patients (DSS, p = 0.038 and DFS, p = 0.011) and in patients with non-GC phenotype (DSS (p = 0.013) and DFS (p = 0.010). Our results imply that in DLBCL, the location of TP53 mutations and IHC analysis of BCL-2 and MYC might have a role in the assessment of prognosis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-2/análisis , Proteínas Proto-Oncogénicas c-bcl-6/análisis , Proteínas Proto-Oncogénicas c-myc/análisis , Translocación Genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales de Origen Murino , Ciclofosfamida , Doxorrubicina , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Prednisona , Rituximab , Análisis de Secuencia de ADN , Análisis de Supervivencia , Proteína p53 Supresora de Tumor/metabolismo , Vincristina , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...